No description
Find a file
2020-11-19 05:48:47 +01:00
.github/workflows Run npm-update in a GitHub workflow 2020-10-20 09:08:08 +02:00
po Fix building PO template 2020-09-29 13:50:31 +03:00
src Use sassc instead of node-sass 2020-10-28 14:49:52 +01:00
test Port to PatternFly 4.x 2020-07-21 10:33:48 +02:00
.eslintignore Add more sample content to subscriptions page 2017-07-26 10:33:14 +02:00
.eslintrc.json Add eslint rules for React hooks 2019-10-18 13:00:17 +02:00
.gitignore Copy patternfly import files from cockpit project automatically 2020-09-08 17:14:34 +02:00
.travis.yml Run integration tests in Travis 2020-10-29 07:23:54 +01:00
cockpit-starter-kit.spec.in Make cockpit-starter-kit.spec.in rpmspec compliant 2020-03-10 11:49:29 +01:00
cockpituous-release Show how to run the release in GitHub workflow 2020-10-13 09:37:35 +02:00
LICENSE Initial commit with a LICENSE and README 2017-06-14 18:19:15 +02:00
Makefile Makefile: Fix PO template generation dependencies 2020-10-29 07:23:54 +01:00
org.cockpit-project.starter-kit.metainfo.xml metainfo: Fix launchable and update description 2020-08-05 13:45:57 +02:00
package.json package.json: Update @patternfly/react-core package dependency 2020-11-19 05:48:47 +01:00
README.md Run integration tests in Travis 2020-10-29 07:23:54 +01:00
webpack.config.js Use sassc instead of node-sass 2020-10-28 14:49:52 +01:00

Cockpit Starter Kit

Scaffolding for a Cockpit module.

Getting and building the source

Make sure you have npm available (usually from your distribution package). These commands check out the source and build it into the dist/ directory:

git clone https://github.com/cockpit-project/starter-kit.git
cd starter-kit
make

Installing

make install compiles and installs the package in /usr/share/cockpit/. The convenience targets srpm and rpm build the source and binary rpms, respectively. Both of these make use of the dist-gzip target, which is used to generate the distribution tarball. In production mode, source files are automatically minified and compressed. Set NODE_ENV=production if you want to duplicate this behavior.

For development, you usually want to run your module straight out of the git tree. To do that, link that to the location were cockpit-bridge looks for packages:

mkdir -p ~/.local/share/cockpit
ln -s `pwd`/dist ~/.local/share/cockpit/starter-kit

After changing the code and running make again, reload the Cockpit page in your browser.

You can also use watch mode to automatically update the webpack on every code change with

$ npm run watch

or

$ make watch

Running eslint

Cockpit Starter Kit uses ESLint to automatically check JavaScript code style in .js and .jsx files.

The linter is executed within every build as a webpack preloader.

For developer convenience, the ESLint can be started explicitly by:

$ npm run eslint

Violations of some rules can be fixed automatically by:

$ npm run eslint:fix

Rules configuration can be found in the .eslintrc.json file.

Automated Testing

Run make check to build an RPM, install it into a standard Cockpit test VM (centos-7 by default), and run the test/check-application integration test on it. This uses Cockpit's Chrome DevTools Protocol based browser tests, through a Python API abstraction. Note that this API is not guaranteed to be stable, so if you run into failures and don't want to adjust tests, consider checking out Cockpit's test/common from a tag instead of master (see the test/common target in Makefile).

After the test VM is prepared, you can manually run the test without rebuilding the VM, possibly with extra options for tracing and halting on test failures (for interactive debugging):

TEST_OS=centos-7 test/check-application -tvs

You can also run the test against a different Cockpit image, for example:

TEST_OS=fedora-32 make check

These tests can be run in Travis CI. The included travis.yml runs the integration tests for two operating systems (Fedora and CentOS 8). Note that if/once your project grows bigger, or gets frequent changes, you likely need to move to a paid account, or different infrastructure with more capacity. Talk to the Cockpit developers if you are interested in that.

Customizing

After cloning the Starter Kit you should rename the files, package names, and labels to your own project's name. Use these commands to find out what to change:

find -iname '*starter*'
git grep -i starter

Automated release

Once your cloned project is ready for a release, you should consider automating that. Cockpituous release aims to fully automate project releases to GitHub, Fedora, Ubuntu, COPR, Docker Hub, and other places. The intention is that the only manual step for releasing a project is to create a signed tag for the version number; pushing the tag then triggers a GitHub action that calls a set of release scripts.

starter-kit includes an example cockpitous release script, with detailed comments how to use it. There is also an example GitHub release action to set up secrets and run cockpituous.

Automated maintenance

It is important to keep your NPM modules up to date, to keep up with security updates and bug fixes. This is done with the npm-update bot script which is run weekly or upon manual request through the npm-update.yml GitHub action.

Further reading